Today’s topics
- Sediment yield

Announcements
- Assignment: HW#13
- Assignment: Read chapter 9 in the text
- HW#12 due 10/22
Downstream Sediment Yields

- Natural resource managers need to know
- Use the USLE and a sediment delivery ratio
- USLE estimates gross sheet and rill erosion
 - Does not account for sediment deposited enroute
 - Does not account for gully or channel erosion
- Sediment delivery ratio ➔ the ratio of sediment delivered at a location in the stream system to the gross erosion from the drainage area above that point.
Sediment Delivery Ratio

- Varies widely with:
 - The size of the area
 - Steepness
 - Density of drainage network
 - Etc.

- Affect of watershed size on ratio
 - 6.4 ac ➔ 65% of eroded soil delivered to stream
 - 320 ac ➔ 33% of eroded soil delivered to stream
 - 3,200 ac ➔ 22% of eroded soil delivered
 - 64,000 ac ➔ 10% of eroded soil delivered
Single Event Sediment Yields

- **USLE**
 - Gross erosion for seasonal, annual, long term

- **MUSLE**
 - Modified Universal Soil Loss Equation
 - Sediment yields for individual storm events
 - \[Y = 95 \times (Q \times q)^{0.56} \times K \times LS \times C \times P \]
 - \(Y \) = single storm sediment yield in tons
 - \(Q \) = storm runoff volume in acre-feet
 - \(q \) = peak discharge in cfs
 - \(K, LS, C \) and \(P \) are the standard USLE terms
Example 9.12 Text

- **Given:**
 - 320-acre watershed
 - 2 in. rainfall event that produces:
 - 12 acre-feet of runoff \(Q \)
 - Peak discharge of 200 cfs \(q \)
 - Soil erodibility factor \((K) = 0.27 \)
 - Topographic factor \((LS) = 0.6 \)
 - Cover – management factor \((C) = 0.05 \)
 - Erosion control practice \((P) = 0.25 \)

- **Solution:**
 \[
 Y = 95[(12)200]^{0.56}(0.27)(0.6)(0.05)(0.25) = 15 \text{ tons}
 \]
\[V_1 = \frac{(600 \text{ ft}^3/\text{s} \times 3600 \text{ s/hr} \times 4 \text{ hr})}{2} = 4,320,000 \text{ ft}^3 \]
\[V_2 = \frac{(600 \text{ ft}^3/\text{s} \times 3600 \text{ s/hr} \times 4 \text{ hr})}{2} = 4,320,000 \text{ ft}^3 \]
\[V_T = \frac{(8,640,000 \text{ ft}^3)}{(43,560 \text{ ft}^2/\text{ac})} = 198.3 \text{ ac-ft} \]
Class Wrap-up

- Assignment: HW#13
- Assignment: Read chapter 9 in the text
- HW#12 due 10/22