Today’s topics
- Strom hydrograph from a series of triangular hydrographs

Announcements
- Assignment: HW#11 (due 10/15 after test #1)
- HW#9 due today
- HW#10 due 10/8

Test #1 on 10/13/14
- Closed notes / closed book ➔ 15 – 25 questions
- Multiple choice / true – false / short problems
- Material will cover lectures up to 10-8-14 / HW# 1 - 10 / labs 1 – 4 / text book readings
Example 5.11 in Text

- **Given:**
 - Same as Example 5.10 but this time more detailed rainfall information
 - 1-hr storm = 2.5 in.
 - 0 – 15 min = 0.5 in.
 - 15 – 30 min = 1.0 in.
 - 30 – 45 min = 0.75 in.
 - 45 – 60 min = 0.25 in.
 - 500 ac watershed
 - Land use = commercial – business
 - Watershed soil ➔ HSG = D
 - Average watershed slope = 1%
 - Hydraulic length of watershed = 6,000 ft

- **Required:**
 - Find the storm hydrograph
Example 5.11

- **Solution:**
 - HSG = D / Commercial ➔ T. 5.1 ➔ CN = 95
 - S = 0.53 in.
 - (same as Ex. 5.10, S = (1000 / CN) - 10)
 - Assume AMC = II ➔ Q = 1.96 in. of runoff
 - (same as Ex. 5.10, Q = (P - 0.2S)^2 / (P + 0.8S))
 - Find points to develop the unit hydrograph
 - t_L = 0.75 hr (45 min)
 - (same as Ex. 5.10, t_L = [L^{0.8}(S + 1)^{0.7}] / [1900 x Y^{0.5}]
 - **New** since D = 15 min. ➔ t_p = t_L + D/2 = 0.88 hr (52.5 min)
 - **New** since t_p = 52.5 min ➔ q_p = 484(A)/t_p = 432 cfs / 1 in. of runoff
Example 5.11 in the Text

- 0 – 15 min \Rightarrow P = 0.5 in. (given)
 - $Q_1 = [0.5 - 0.2(0.53)]^2 / [0.5 + 0.8(0.53)]$
 - $Q_1 = 0.17$ in. of runoff
 - $q_{p1} = 432$ cfs / 1" of SRO x 0.17" = 73.44 cfs
 - $t_{p1} = t_L + D/2 = 45 + 15/2 = 52.5$ min
 - $t_{b1} = 2.67(t_p) = 2.67(52.5) = 140.2$ min
Example 5.11 in the Text

- 0 – 30 min \(P = 0.5 + 1.0 = 1.5 \) in.
 - \(Q_1 + Q_2 = [1.5 - 0.2(0.53)]^2 / [1.5 + 0.8(0.53)] \)
 - \(Q_1 + Q_2 = 1.01 \) in. of runoff
 - \(Q_2 = 1.01 - 0.17 = 0.84 \) in. of runoff
 - \(q_{p2} = 432 \text{ cfs} / 1'' \text{ of SRO} \times 0.84'' = 362.88 \text{ cfs} \)
 - \(t_{p2} = 52.5 + 15 = 67.5 \) min
 - Shift on the x-axis by 15 min
 - \(t_{b2} = 140.2 + 15 = 155.2 \) min
 - Shift on the x-axis by 15 min
Example 5.11 in the Text

- 0 – 45 min \(P = 0.5 + 1.0 + 0.75 = 2.25 \) in.
 - \(Q_1 + Q_2 + Q_3 = [2.25 - 0.2(0.53)]^2 / [2.25 + 0.8(0.53)] \)
 - \(Q_1 + Q_2 + Q_3 = 1.72 \) in. of runoff
 - \(Q_3 = 1.72 - 0.17 - 0.84 = 0.71 \) in. of runoff
 - \(q_{p3} = 432 \) cfs / 1” of SRO x 0.71” = 306.7 cfs
 - \(t_{p3} = 52.5 + 15 + 15 = 82.5 \) min
 - Shift on the x-axis by 30 min
 - \(t_{b3} = 140.2 + 15 + 15 = 170.2 \) min
 - Shift on the x-axis by 30 min
Example 5.11 in the Text

- 0 – 60 min \(\Rightarrow P = 0.5 + 1.0 + 0.75 + 0.25 = 2.50 \) in.
 - \(Q_1 + Q_2 + Q_3 + Q_4 = [2.5 - 0.2(.53)]^2 / [2.5 + 0.8(.53)] \)
 - \(Q_1 + Q_2 + Q_3 + Q_4 = 1.96 \) in. of runoff
 - \(Q_4 = 1.96 - 0.17 - 0.84 - 0.71 = 0.24 \) in. of runoff
 - \(q_{p4} = 432 \text{ cfs} / 1” \text{ of SRO} \times 0.24” = 103.6 \text{ cfs} \)
 - \(t_{p4} = 52.5 + 15 + 15 + 15 = 97.5 \) min
 - Shift on the x-axis by 45 min
 - \(t_{b4} = 140.2 + 15 + 15 + 15 = 185.2 \) min
 - Shift on the x-axis by 45 min
Figure 5.13. Development of a storm hydrograph based on knowledge of the rainfall distribution.
<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Incremental Hydrograph 1</th>
<th>Incremental Hydrograph 2</th>
<th>Incremental Hydrograph 3</th>
<th>Incremental Hydrograph 4</th>
<th>Storm Water Hydrograph</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>21.0</td>
</tr>
<tr>
<td>30</td>
<td>42.0</td>
<td>103.7</td>
<td>0.0</td>
<td>0.0</td>
<td>145.7</td>
</tr>
<tr>
<td>45</td>
<td>62.9</td>
<td>207.4</td>
<td>87.6</td>
<td>0.0</td>
<td>357.9</td>
</tr>
<tr>
<td>52.5</td>
<td>73.4</td>
<td>259.3</td>
<td>131.5</td>
<td>14.8</td>
<td>479.0</td>
</tr>
<tr>
<td>60</td>
<td>67.2</td>
<td>311.1</td>
<td>175.3</td>
<td>29.6</td>
<td>583.2</td>
</tr>
<tr>
<td>67.5</td>
<td>60.9</td>
<td>362.9</td>
<td>219.1</td>
<td>44.5</td>
<td>687.4</td>
</tr>
<tr>
<td>75</td>
<td>54.6</td>
<td>331.8</td>
<td>262.8</td>
<td>59.3</td>
<td>708.5</td>
</tr>
<tr>
<td>82.5</td>
<td>48.3</td>
<td>300.7</td>
<td>306.7</td>
<td>74.0</td>
<td>729.7</td>
</tr>
<tr>
<td>90</td>
<td>42.0</td>
<td>269.6</td>
<td>280.5</td>
<td>88.8</td>
<td>680.9</td>
</tr>
<tr>
<td>97.5</td>
<td>35.8</td>
<td>238.5</td>
<td>254.1</td>
<td>103.7</td>
<td>632.1</td>
</tr>
<tr>
<td>105</td>
<td>29.6</td>
<td>207.4</td>
<td>227.8</td>
<td>94.8</td>
<td>559.6</td>
</tr>
<tr>
<td>120</td>
<td>16.8</td>
<td>145.2</td>
<td>175.3</td>
<td>77.0</td>
<td>414.3</td>
</tr>
<tr>
<td>135</td>
<td>4.2</td>
<td>82.9</td>
<td>122.7</td>
<td>59.3</td>
<td>269.1</td>
</tr>
<tr>
<td>150</td>
<td>0.0</td>
<td>20.7</td>
<td>70.1</td>
<td>41.3</td>
<td>132.1</td>
</tr>
<tr>
<td>165</td>
<td>0.0</td>
<td>0.0</td>
<td>17.5</td>
<td>23.7</td>
<td>41.2</td>
</tr>
<tr>
<td>180</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.9</td>
<td>5.9</td>
</tr>
</tbody>
</table>

* Sum of columns 1, 2, 3, and 4.
\[Y = mX + b \implies m = \frac{(73.4 - 0)}{(52.5 - 140.2)} \implies m = -0.837 \]

\[Y = -0.837X + b \implies b = Y + 0.837X = 73.4 + 0.837(52.5) \implies b = 117.343 \]

\[Y = -0.837X + 117.343 \]
Class Wrap-up

- **Assignment: HW#11** (due 10/15 after test #1)
- **HW#10** due 10/8

- **Test #1 on 10/13/14**
 - Closed notes / closed book ➔ 15 – 25 questions
 - Multiple choice / true – false / short problems
 - Material will cover lectures up to 10-8-14 / HW# 1 - 10 / labs 1 – 4 / text book readings